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Abstract 

The purpose of this paper is to clarify the relationship between existing so-called 'hidden 
variable theories' of quantum phenomena and some well-known proofs, such as those 
ofvon Neumann, Jauch and Piron, and Kochen and Specker, which purport to establish 
that no such theory is possible. The proof of Kochen and Specker, which is a stronger 
version of yon Neumann's result, demonstrates the impossibility of embedding the 
algebraic structure of physical parameters of the quantum theory, represented by the 
self-adj oint HUbert space operators, into the commutative algebra of real-valued functions 
on a 'phase space' of hidden states. This is a necessary condition for a hidden variable 
extension of the quantum theory in the usual sense of a statistical mechanical derivation 
of the statistical theorems of the quantum theory in the classical manner. No existing 
so-called 'hidden variable theory' is a counter-example to yon Neumann's proof. The 
early 1951 'hidden variable theory' of Bohm and the recent theory of Bohm and Bub are 
not in fact hidden variable theories in the usual sense of the term. Since the term 'hidden 
variable theory' is justifiably used to denote the kind of theory rejected by yon Neumann, 
Jauch and Piron, and Kochen and Specker, it is suggested that the term should not be 
used as a label for the theories considered by Bohm and other workers in this field. Such 
theories could be regarded as fundamentally compatible with the original Copenhagen 
interpretation of the quantum theory, as expressed by Bohr. 

1. Introduction 

W h a t  is a h idden  var iable  theory  of  quan tum phenomena?  On  the one 
h a n d  there are wel l -known proofs ,  such as those of  von N e u m a n n  (1955), 
Jauch & Pi ron  (1963) and  K o c h e n  & Specker  (1967a) which pu rpo r t  to 
es tabl ish tha t  no such theory  is possible.  On the other  hand,  there  exist 
so-cal led ' h idden  var iable  theor ies '  (Bohm & Bub, 1966) which, a t  least  a t  
first sight, seem to provide  counter -examples  to these theorems.  In  spite 
of  the excellent  analysis  by  Bell (1966), the re la t ionship  between these 
p roofs  and  the ' h idden  var iable  theor ies '  is still obscure.~ The purpose  o f  
this p a p e r  will be to clarify this re la t ionship.  The  quest ion is fur ther  confused 
by  current  misconcept ions  abou t  the role of  measurement  in the qua n tum 
theory,  pa r t ly  resul t ing f rom a misunders tand ing  of  Bohr ' s  pr inciple  of  
complementar i ty ,  the core of  the or iginal  Copenhagen  in terpre ta t ion.  

The p r o o f  of  Kochen  and Specker  demons t ra tes  the imposs ib i l i ty  of  
embedd ing  the a lgebra ic  s tructure of  physical  pa ramete r s  of  the qua n tum 
theory,  represented  by  the self-adjoint  Hi lber t  space opera tors ,  into the 

t Supported by the National Science Foundation. 
$ See, for example, Letters to the Editor, Reviews of Modern Physics, 40, 228 (1968). 

7 101 



102 JEFFREY BUB 

commutative algebra of real-valued functions on a 'phase space' of hidden 
states. This turns out to be a necessary condition for a hidden variable 
extension of the quantum theory, as understood by Kochen and Specker. 
von Neumann's original proof  is a much weaker result which excludes only 
a relatively uninteresting class of hidden variable theories. In its present 
form, the Jauch and Piron proof, in terms of the lattice of quantum 
theoretical propositions, is not an interesting improvement on von 
Neumann's result, but the Kochen and Specker proof  suggests that a lattice 
theoretical reconstruction in a stronger form is possible. 

No existing so-called 'hidden variable theory' is a counter-example to 
the stronger version of von Neumann's proof. The early 1951 'hidden 
variable theory' of Bohm (1952a), and the recent theory of Bohm & Bub 
(1966), are not in fact hidden variable theories in the usual sense of the 
term. Since the term 'hidden variable theory' is justifiably used to denote 
the kind of theory rejected by yon Neumann, Jauch and Piron, and Kochen 
and Specker, it would perhaps be appropriate to drop the use of the term 
as a label for the theories considered by Bohm and other workers in this 
field.t Such theories could be regarded as fundamentally compatible with 
the original Copenhagen interpretation of the quantum theory, as expressed 
by Bohr. 

The conclusions of this paper will therefore be that there are no hidden 
variable theories of quantum phenomena in the usual sense, that the term 
'hidden variable theory' for the kind of theory considered by Bohm and his 
collaborators is unfortunate and misleading, and that this latter approach 
might well be characterized as an extension of Bohr's conception of whole- 
ness as opposed to the von Neumann philosophy. 

2. The Proof of Koehen and Specker 

The quantum theory, as a statistical theory, may be characterized by a 
set 5" of statistical states and a set ~ of physical parameters. Each ~b e 5 ~ 
A E ~ defines a probability measure/z0A on the real line ~ ,  i.e., if , g  is a 
measurable subset of ~ ,  then/xOA(Mg' ) is the probability that the value of 
the physical parameter A in the statistical state ~b lies in the set rig'. It 
follows that the average value of A in the state ~b is given by the expression: 

Av ~,(A) = ; r dtZoA(r) (2.1) 
- m  

If  the physical parameters are interpreted as denoting physical attributes 
of objects in the usual sense, then the question arises for any such theory: 
Is it possible to embed the statistical theory into a more fundamental 

"~ Bohm has suggested the term 'contingent parameters' instead of 'hidden variables' 
in an unpublished paper presented to a Symposium on the foundations of quantum theory 
('Quantum Theory and Beyond'), held at the University of Cambridge, England, July 
15-20, 1968. 
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theory, so that the probability measures /XCA (for a fixed q~ e 5 p, and all 
A E # )  can be associated with a probability distribution over certain 
'hidden' states, which are not themselves statistically related to the physical 
parameters. This embedding is understood in the following sense :t 

(I). Each statistical state ~b ~ 5 t, is associated with a probability measure 
p,  on the 'phase space' S of hidden states, i.e., if A is a measurable subset 
of W, then pc(A) is the probability that the state of the system (the phase 
point of the system) lies in A. 

(II). Each physical parameter A e ~ is associated with a function 
fA: W ---> ~ ,  mapping the set W of hidden states into the reals. In accordance 
with the interpretation of the physical parameters as denoting physical 
attributes of objects, it is assumed that the value of the physical parameter 
g(A) is equal to g(a) if a is the value of the parameter A, i.e., that 
f~a~(A) = g(a) iffA(~0 = a, or: 

f~(A, = g(fa) (2.2) 
(III). The measure of the set of phase points in W which are mapped by 

the functionfa onto the set J {  of reals is equal to the appropriate measure 
of the set J {  specified by the original statistical theory, i.e. : 

t*~A(~g) = p,(f-jl(~g)) (2.3) 
Equivalently: 

Av r = f f~(>,) dpo(A ) (2.4) 

Evidently, this embedding of the algebraic structure of physical para- 
meters of the original statistical theory into the algebra of real-valued 
functions on a suitable phase space, in such a way that the statistical 
conditions (2.3) and (2.4) are satisfied, may or may not be possible. This 
is a purely mathematical question, the answer to which depends on the 
specific algebraic structure of the statistical theory involved. Two points 
should be emphasized here. Firstly, the possibility of the embedding is a 
necessary, but not sufficient, condition for the construction of a determin- 
istic theory which will include the quantum theory. Even if a suitable 
embedding exists, it is a further problem whether or not a deterministic 
equation of motion can be found for the hidden states which will be con- 
sistent with the time transformations of the quantum theory. Secondly, the 
possibility of the embedding is not even a necessary condition for the 
construction of a deterministic theory which will correctly explain all the 
experimental results currently explained by the quantum theory. For example, 
such a theory need not necessarily satisfy (III), i.e., we could have: 
p4~(f741(dY)) =/z~a(~') ,  where/Z~A is experimentally indistinguishable from 
t~,A for those experiments which have actually been performed. 

Kochen and Specker demonstrate that the embedding is impossible for 
the quantum theory. The proof is carried out in the following way: A set of 

I" The following conditions have been abstracted from the article by Kochen & Specker 
(1967a). 
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physical parameters A~ is called commeasurable if there exists a physical 
parameter B and functions ~, such that At = 0q(B). It is a theorem that 
parameters of the quantum theory represented by commuting Hilbert space 
operators are commeasurable. A set of physical parameters is said to form 
a partial algebra if sums and products are defined for commeasurable 
parameters according to the rules: 

k l A l  + k 2 A 2  = (k l  ~1 + lc20:2)(B) 
(2.5) 

A1A~ = (~1 c~2) (B) 

where Al = at(B), A2 = cr and kl,kz are real numbers. The partial 
operations are preserved under a mapfwhich satisfies the condition (2.2), 
i.e. 

f k ,  A1 + k: A: = f ( k ,  ~ + k2 a2) (B) 

= (k ,  a ,  + k2 az) ( f . )  

= kl f=,(,) + k2f~,~(B) 

=k l fA ,  +k2fA~ 

= (-~ ~2)(f.) 

= cq(fB ) ~x2(f.) 

=fA, fA2 (2.6) 

The set ~ "  of all functions f :  5f" -+ ~ from the phase space of hidden 
states into the reals forms a commutative algebra over ~ .  Since condition 
(2.2) implies that the partial operations are preserved under the map f, 
a necessary criterion for a hidden variable extension of the quantum theory 
[satisfying conditions (I), (II), and (III)] is the existence of an embedding of 
the partial algebra ~ of self-adjoint Hilbert space operators (representing 
the physical parameters of the theory) into the commutative algebra ~ .  
Each hidden state )t E W may be regarded as defining a homomorphism 
h a: ~ -+ ~ of the partial algebra 3 into ~ ,  namely the homomorphism 
defined by ha(A) =)CA(?'). Thus, the possibility of the embedding implies 
the existence of functions ha, which simultaneously associate a value with 
every physical parameter. 

Kochen and Specker prove that there does not exist such a homomorphism 
h: ~ -> 2 .  The proof is carried out by showing that there is no homo- 
morphism from the partial Boolean algebra ~ of quantum theoretical 
propositions1- represented by the idempotent elements of ~ onto {0,1}. 

t See Section 4, below, for an explication of the use of the term 'proposition'  in this 
sense. 
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This is equivalent to demonstrating that the partial Boolean algebra of 
quantum theoretical propositions cannot be embedded into a Boolean 
algebra. Specifically, Kochen and Specker demonstrate that there does 
not exist a homomorphism h : ~  --> {0,1} from a certain finite partial 
Boolean sub-algebra ~ of ~ onto {0,1}. The proof  is not trivial because 
some partial algebras can be embedded into commutative algebras. It is 
a consequence of its peculiar algebraic structure (i.e., the algebraic structure 
of self-adjoint operators in Hilbert space) that the partial algebra of physical 
parameters of the quantum theory cannot be embedded into the com- 
mutative algebra ~ r .  

The aim of Kochen and Specker was to prove the non-existence of a 
hidden variable extension of the quantum theory, in a certain sense. In 
order to appreciate the significance of their result, it is necessary to take a 
closer look at the definition of 'commeasurability' of physical parameters, 
coupled with condition (2.2). Kochen and Specker refer to the physical 
parameters of the quantum theory as 'observables'. The term 'corn- 
measurable' is introduced to suggest 'simultaneously measurable': 'corn- 
measurable observables' Ai = c,~(A) are 'simultaneously measurable', 
because the values of the 'observables' A~ are obtained by applying the 
functions cz~ to the measured value of the 'observable' A. This suggests 
that 'commeasurable observables' are interpreted as 'co-determined 
attributes of the object measured'. Condition (2.2),fo<A) = g(fA), is therefore 
a necessary condition for any reasonable hidden variable extension of the 
quantum theory, since it simply expresses the natural requirement that 
functionally related or co-determined attributes of an object should be 
associated with correspondingly related real-valued functions on the phase 
space in the hidden variable extension of the statistical theory. 

However, Kochen and Specker identify the physical parameters of the 
quantum theory with the self-adjoint Hilbert space operators. Now, it is 
possible to have a set of operators {A, B, C}, such that AB = BA, BC = CB, 
but AC va CA. This means that the set (A,B) of corresponding physical 
parameters is 'commeasurable', the set {B, C} is 'commeasurable', but the 
set {A, C} is not 'commeasurable'. Thus, there is a physical parameter A' 
such that A and B are expressible as functions of A', and a physical para- 
meter C'  such that B and C are expressible as functions of C', but there 
does not exist a physical parameter P such that A and C are expressible as 
functions of P. If  B=g1(A')=g2(C'), then the 'commeasurable' pair 
{B,A'} cannot be interpreted as a 'co-determined pair of attributes of an 
object', since the pair {B, C'} would then have to be similarly interpreted, 
implying that the pair {A', C'} is co-determined. But A' and C' are 'non- 
commeasurable' and correspond to non-commuting operators. 

For  example, suppose A corresponds to the operator A = ~i aiP~ and 
C corresponds to the operator C = ~ cjQj, where P~, Qj are projection 
operators onto complete, orthogonal sets of vectors, and a~, cj are the 
eigenvalues of A and C respectively. (It is assumed that the Hilbert space has 
more than two dimensions.) Let P1 = QI and define B = P1 = Q1. Then the 
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idempotent physical parameter B can be expressed as a function of A, 
i.e., B = gl(A), defined by gl(al) = 1 and gl(a~) = 0 (i r 1). Similarly, B can 
be expressed as a function of C, i.e., B = g2(C), defined by g2(cl) = 1 and 
g2(cj) = 0 ( j  ~ 1). I f  B = 1 is associated with the proposition asserting that 
the 'quantum object' possesses the attribute symbolized by A = a~, then 
B = 1 must with equal validity be associated with the proposition asserting 
that the 'quantum object' possesses the attribute symbolized by C =  c~. 
But this contradicts the fact that A and C do not commute, i.e., that A and 
C are 'non-commeasurable'. 

Since the self-adjoint Hilbert space operators representing the physical 
parameters of the quantum theory cannot be interpreted as referring to the 
'attributes of quantum objects', the term 'commeasurable' to describe a 
functional relationship between certain parameters is misleading. A more 
neutral term would be 'coherent'. This term does not prejudice the inter- 
pretation of the physical parameters of the theory and will be used below 
instead of the term 'commeasurable'. Condition (2.2) now becomes 
suspect. Why should coherent physical parameters be associated with 
related real-valued function on a phase space of hidden states ? For a 
particular A E f such that fB(A) = 1, this would imply that fa(h) = al and 
fc(A) -- cl. This is not a theorem in the quantum theory. It is quite possible, 
for example, that fa(A) = ai and fc(A) r cl for some A E W, and also that 
/Z~A({al} ) = p~(f~l(al) ) =/z~B({1}) = p~(f~'(1)) =/Zr = pr 
i.e., that the statistical relations are satisfied. In other words, condition 
(2.2) implies thatfB = g~(f~) andf~ = g2(fc), which imposes the restriction 
g~(fA) = g2(fc) on the phase space functions associated with the non- 
commuting operators A, C. 

This objection to condition (2.2) does not yet go to the heart of the 
matter. If  the physical parameters of the quantum theory, represented by 
self-adjoint Hilbert space operators, are not interpreted as referring to the 
attributes or properties of 'quantum objects', then there is no motivation 
whatsoever for developing a hidden variable extension of the quantum 
theory in the sense defined by Kochen and Specker. The hidden variable 
problem as posed by yon Neumann and refined by Kochen and Specker 
is a pseudo-problem. As Kochen and Specker themselves point out (Kochen 
& Specker, 1967b), the hidden variable problem without condition (2.2) 
is trivial: it is always possible mathematically to introduce a phase space ~ ,  
and to associate real-valued functions on the phase space with the physical 
parameters of a statistical theory, in such a way that the statistical theorems 
are recovered. Condition (2.2) imposes a structure on the set of physical 
parameters suggested by their interpretation as physical attributes of 
objects. However, it is just this interpretation which is incompatible with 
the representation of the physical parameters by self-adjoint Hilbert space 
operators, and which is also rejected--implicitly or explicitly--by existing 
so-called 'hidden variable' theories.-~ 

t See Section 6, below. 
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To sum up :  a h idden  var iable  extension of  the qua n tum theory,  as usual ly  
unders tood ,  involves the in te rpre ta t ion  of  the self-adjoint  Hi lber t  space 
opera to r s  as represent ing the physical  a t t r ibutes  of  objects.  The p rob l e m is 
then to embed  the q u a n t u m  theory  into a more  fundamenta l  theory ,  so 
tha t  these a t t r ibutes  are represented  by  real -valued funct ions on a phase  
space, in such a way tha t  cer tain stat ist ical  condi t ions  are satisfied. This 
means  tha t  commut ing  opera to rs  are represented by  related functions,  but  
since commuta t iv i ty  of  opera to r s  is not  transit ive,  condi t ions  are imposed  
on the representat ives  of  non-commuting opera tors  which go beyond  
anyth ing  deducible  f rom the quan tum theory.  A l t h o u g h  this embedd ing  
can be shown to be impossible ,  this result  is quite i r re levant  to those theories 
which have actual ly  been p roposed  as ' h idden  var iable '  theor ies . t  

The  quest ion of  a h idden  var iable  extension of  the qua n tum theory  has 
been fur ther  confused because the proofs  of  von Neumann ,  and  Jauch 
and  Piron,  are actual ly  much  weaker  results than  the Kochen  and  Specker  
proof ,  and  do no t  even establ ish the imposs ibi l i ty  of  the embedding.  These 
p roofs  will be discussed below. 

3. yon Neumann's Proof 

Kochen  and  Specker  have shown (Kochen  & Specker,  1967c) tha t  von 
N e u m a n n ' s  p r o o f  amoun t s  to a demons t r a t i on  of  the non-existence of  a 
funct ion Av :  ~ -+ ~ ,  which maps  the set ~ of  self-adjoint  Hi lber t  space 
opera to r s  into the set ~ of  real  numbers ,  satisfying the condi t ions :  

(i) A v ( i ) =  1 

(ii) A v  (kA) = k A v  (A) 

(iii) A v  (A 2) = A v  2 (A) 

(iv) A v  (A + B) = A v  (A) + A v  (B) 

for  all k e ~ ,  A e 

for  all A E 

for  all A, B ~ 
(3.1) 

t Bell (1966), first pointed out a similar feature of Gleason's theorem. It follows as a 
corollary to Gleason's theorem that the average values of physical parameters represented 
by commuting operators cannot be additive for dispersion-free states. This is a stronger 
result than yon Neumann's theorem, in which the non-existence of hidden variables is 
proved on the basis of an additivity requirement for the average values of all physical 
parameters, including those represented by non-commuting operators. (See Section 3, 
below.) Bell argued that the statistical relations of the quantum theory can be recovered 
from a 'hidden variable theory' in which Gleason's theorem is false for dispersion-free 
states. This is certainly true, but such a theory would not be a hidden variable theory in 
the sense of an embedding satisfying conditions (I), (II), and (III), because condition (2.2) 
would not be satisfied. The proof of Kochen and Specker (or the corollary to Gleason's 
theorem) is not inadequate merely because the assumptions are too restrictive. The 
assumptions in fact define the problem of proving the impossibility of a hidden variable 
extension of the quantum theory in the usual sense, and without these assumptions there 
is no problem (i.e., any proof would be quite arbitrary, and therefore uninteresting). 
These remarks do not apply to the assumptions of yon Neumann, or Jauch and Piton. 
(See Sections 3 and 4, below.) 
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Av(A) is the average value of the physical parameter represented in the 
theory by the operator A. Condition (iii) therefore defines what yon Neu- 
mann calls a 'dispersion-free' statistical state. According to yon Neumann, 
if a hidden variable extension of the quantum theory is possible, then there 
exists a function Av for each set of values of the hidden variables (i.e., for 
each point in the phase space of hidden states) satisfying conditions (i), 
(ii), (iii), and (iv). 

Kochen and Specker have pointed out that the proof of the non-existence 
of such a function is trivial. It follows from the above conditions that the 
function Av is multiplicative for commuting operators, i.e., that 
Av(AB) = Av(A)Av(B) if AB = BA. From this it is easy to prove that 
Av(A) must be an eigenvalue of A. Hence condition (iv) cannot be satisfied 
for non-commuting operators, because the eigenvalues of non-commuting 
operators are not in general additive. 

The Kochen and Specker proof of the impossibility of a hidden variable 
extension of the quantum theory involves the non-existence of a real-valued 
function on the set of physical parameters (represented by self-adjoint 
Hilbert space operators) which is multiplicative and linear only on coherent 
parameters. This is the homomorphism h: ~ -+ ~ ,  referred to in Section 2. 
yon Neumann's proof is much weaker and establishes only the non- 
existence of a real-valued function which is multiplicative on coherent 
physical parameters and linear on allparameters. Hence, the proof excludes 
only a relatively uninteresting class of embeddings, namely those era- 
beddings characterized by a map h satisfying the conditions: 

h(AB) = h(A) h(B), for coherent A, B 

h(kl A + k2B) = kl h(A) + kzh(B),  for all A, B 
(3.2) 

Since ha(A)=fA(h), this means that the value associated with a linear 
combination of two non-coherent physical parameters, for a particular 
hidden state )t, is equal to the linear combination of the values associated 
with the non-coherent parameters. Evidently this is an unreasonable 
restriction on a hidden variable extension of the quantum theory. In other 
words, von Neumann's proof does not rule out a large class of hidden 
variable extensions of the quantum theory, i.e., theories characterized by a 
phase space W of hidden states, a probability measure pO on W for each 
statistical state (s, and a real-valued functionfa on W satisfying condition 
(2.2) associated with each physical parameter A, such that all the statistical 
theorems of quantum kinematics are recovered. 

von Neumann's own proof was much more complicated than the 
reformulation by Kochen and Specker, and it seems reasonable to suppose 
that he did not realize its inadequacy. On the basis of assumptions (3.1) 
and an additional assumption (that Av(A) I> 0 if A is 'by nature' non- 
negative, e.g. if A is expressible as the square of another operator), von 
Neumann demonstrated that there exists a linear, semi-definite, self-adjoint 
operator U, such that for any operator A: 
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Av (A) = Tr (UA) (3.3) 

Hence, every statistical state satisfying (3.1) can be associated with a certain 
statistical operator from which the average value of any physical parameter 
can be deduced according to a certain algorithm. Since there is no physically 
meaningful statistical operator which gives zero dispersion for all physical 
parameters, von Neumann's first conclusion was that there are no dis- 
persion-flee states. In addition, there are statistical operators which 
represent 'pure' or 'homogeneous' states, i.e., statistical states which 
cannot be expressed as a probability distribution of different states. The 
statistics of the pure state cannot result from averaging over dispersion-free 
hidden states because, firstly, the pure state could then be represented as a 
mixture of two different statistical states and, secondly, because the 
dispersion-free hidden states do not exist. 

This argument is, of course, much more involved than the Kochen and 
Specker reformulation, and because of its redundancy the significance of 
condition (iv) is not clear.t It is not sufficient to prove that dispersion-free 
states do not exist in a theory which has some of the essential characteristics 
of the quantum theory. This still leaves open the possibility that the quantum 
theory can be embedded into a hidden variable theory in the usual sense, 
i.e., that there exists a homomorphism from the set of physical parameters 
of the quantum theory into the set of real-valued functions on a suitable 
phase space, in such a way that various statistical conditions are satisfied. 
The homomorphism is a function h satisfying the conditions: 

h(AB) = h(A) h(B) 
(3.4) 

h(kl A + k2 B) = k I h(A) + k2h(B) 

for coherent physical parameters. Any conditions on the function h for 
non-coherent physical parameters, such as that imposed by yon Neumann 
in condition (3.2) or (iv), restricts the class of hidden variable extensions of 
the quantum theory in an arbitrary manner. 

4. The Proof of Jauch and Piron 

Jauch and Piron attempt to prove the impossibility of a hidden variable 
extension of the quantum theory by investigating the order relations of 
quantum theoretical propositions, i.e., the 'logic' of the quantum theory.$ 

From the point of view of Kochen and Specker, the set of physical 

~ This is von Neumann's condition B'. [See yon Neumann (1955, p. 311).] Bell (1966), 
first pointed out the inadequacy of this condition. He did not, however, make any dis- 
tinction between his criticism of yon Neumann's proof and his criticism of an application 
of Gleason's theorem to the question of a hidden variable extension of the quantum 
theory. (See footnote on p. 7.) 

J; This concept of a 'quantum logic' was first introduced by Birkhoff, G. & yon 
Neumann, J. (1936). Annals of Mathematics, 823. 
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parameters of a theory forms a partial algebra over the field ~ of real 
numbers, with respect to the relation of coherence. If  A is an idempotent 
element of the set ~ (i.e., A e = A), then the possible values of A can only 
be 1 or 0 (if it is assumed that the possible values of A 2 are the squares of 
the corresponding values of A). Each such idempotent physical parameter 
may be associated with aproposition of the theory, the two possible values 
corresponding to truth and falsity. The set of propositions of a physical 
theory therefore forms a partial Boolean algebra, which may be defined as 
a set &elements with Boolean operations which satisfy the Boolean axioms 
for coherent elements. Evidently, the set ofidempotent elements of a partial 
algebra forms a partial Boolean algebra. 

The physical parameters (A, B . . . .  ) of the quantum theory are represented 
by the self-adjoint operators (A,B . . . .  ) on a complex Hilbert space, which 
form a partial algebra over the field ~ of reals, with respect to the relation 
of commutativity. The idempotent self-adjoint operators are projection 
operators (Pa, P~,..-), and form a partial Boolean algebra. This partial 
Boolean algebra is isomorphic to the partial Boolean algebra of closed 
linear subspaces ('//',, ~//'b . . . .  ) of the Hilbert space, because every projection 
operator corresponds uniquely to a closed linear subspace. It is also iso- 
morphic to the partial Boolean algebra of quantum theoretical propositions 
(a,b . . . .  ). 

The Boolean operations v, ^, and ' (join, meet, and complement, 
analogous to the set-theoretical operations union, intersection, and 
complement) for the set of propositions are related to the ring operations 
+ , . ,  and - ,  for the set of projection operators, as follows: a' is associated 
with the projection operator I - P~ (which defines the subspace ~ - ~r 
where o~ is the whole Hilbert space). The proposition a ^ b is associated 
with the projection operator Pa .Pb (which defines the sub-space consisting 
of those Hilbert space vectors which belong to both ~/'a and ~/'b). The 
proposition a v b is associated with the projection operator 

I - ( I  - -  Pa)  ( I  - P~)  = P ,  + P~ - P . .  Pb 

(which defines the subspace spanned by those Hilbert space vectors which 
are linear combinations of vectors from r and vectors from r (These 
operations are so far assumed to be defined only for commuting projection 
operators and their corresponding coherent idempotent physical para- 
meters.) 

A binary relation ~< can be introduced into a partial Boolean algebra, 
defined by: 

a~<b if and only if a ^ b = a  (4.1) 

It follows from the axioms of a partial Boolean algebra that the relation ~< 
defines a partial order, i.e., it is reflexive (a ~< a), antisymmetric (if a ~< b 
and b <~ a, then a = b), and transitive (if a ~< b and b <<. c, then a <~ c). The 
sentential connectives and, or, and not have similar properties to the Boolean 
operations ^, v, and ' (which are referred to as conjunction, disjunction, 
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and negation in the logical terminology). This suggests introducing an 
operation ' 3 '  analogous to logical implication: 

It  follows that:  
a<.b  

a=~ b = a '  v b (4.2) 

if and only if a =~ b = 1 (4.3) 

A lattice is a partially ordered set in which every pair of  elements has 
both a supremum (or least upper bound), and an infimum (or greatest lower 
bound). The supremum and infimum are denoted by a v b and a ^ b, 
respectively. The elements of a distributive lattice satisfy the distributive 
laws 

a A (b v c) = ( a  A b) v (a A c) and a v (b A e) = ( a  v b) A (a v c) 

A lattice is complemented if for every element a there exists a complement 
a', defined by a A a '  = 0, and a v a' = 1, where 0 and 1 are two distinguished 
elements such that 0 ~< a and a ~< 1 for every a It  is a theorem that a com- 
plemented distributive lattice is a Boolean algebra. The complement of 
an element, as defined here, is not necessarily unique. By analogy with the 
concept of orthogonal subspaces in a vector space, a unique ortho-cornple- 
ment, a j-, of a lattice element, a, can be defined, so that (a J-) • = a, a A a 2- = 0, 
a V a •  1, and a ~< b implies b J- ~< a • In a distributive lattice, comple- 
mentation is unique and is equivalent to ortho-complementation.T 

Since the set of propositions of a physical theory forms a partial Boolean 
algebra, an order relation can be defined so that the set of propositions 
becomes a partially ordered system (i.e., the relation is reflexive, anti- 
symmetric, and transitive). The system will not necessarily be a lattice, 
because the Boolean operations are only defined for propositions corre- 
sponding to coherent physical parameters, and hence if some parameters 
are not coherent, not every pair of elements in the system will have a 
supremum and an infimum. However, the Boolean operations can simply be 
extended to all propositions. For example, in the quantum theory, if the 
Hilbert space operators Pa and Pb do not commute, then the proposition 
a A b can be associated with the subspace consisting of those Hilbert space 
vectors which belong to both ~/~a and ~f-~ ( ~ a  and ~K" b being the closed 
linear subspaces corresponding to the projection operators P,  and Pb 
respectively). Similarly, the proposition a v b can be associated with the 
subspace spanned by those Hilbert space vectors which are linear com- 
binations of vectors f rom ~f~, and vectors f rom ~F" b. (In this case, P , .  Pb 
and P,  + Pb -- P , .  Pb are not projection operators. The projection operators 
corresponding to a A b and a v b have to be defined by a limiting process--  
a A b corresponds to the projection operator:  lim(P,.P~)".) In fact, the 

n - - - > ~  

partial Boolean algebra may be regarded as a family of Boolean algebras, 

T See, for example, Birkhoff, G. (1940). Lattice Theory, Theorem 6.1, p. 88. American 
Mathematical Society, New York, 
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each of which contains elements which are non-coherent with some elements 
of all the other Boolean algebras in the family. The extension of the Boolean 
operations to non-coherent elements belonging to different Boolean 
algebras in this family will not, of course, convert the partial Boolean 
algebra into a Boolean algebra (unless it can be embedded into a Boolean 
algebra). But it will convert the partial Boolean algebra, considered as a 
partially ordered set, into a complemented lattice. In view of the theorem 
that a complemented distributive lattice is a Boolean algebra, this lattice 
cannot be distributive unless the partial Boolean algebra is embeddable 
into a Boolean algebra. 

Jauch and Piron prefer to analyse the ortho-complemented lattice of 
quantum theoretical propositions rather than the corresponding partial 
Boolean algebra. They introduce the concept of compatibility, analogous to 
the concept of coherence: two propositions a and b are compatible if the 
sub-lattice generated by taking infima and ortho-complements is isomorphic 
to a complemented, distributive lattice, i.e., to a Boolean algebra.t Since 
the partial Boolean algebra of quantum theoretical propositions cannot be 
embedded into a Boolean algebra, not all quantum theoretical propositions 
are compatible. In other words, the lattice of quantum theoretical proposi- 
tions cannot be distributive. As a simple example, consider the propositions 
a, b, and b • associated with the non-commuting projection operators P,, 
Pb, and Pb • such that ~/ ' ,^b= 3V" ^~• ~ (the null subspace). Then 
a A (b v b j-) = a  A I = a ,  but (a A b) v (a A b • =0.~: 

The propositions of a hidden variable theory are all compatible by 
definition, because they are the idempotent elements of a commutative 
algebra (the set ~ r  of all functions f :  f -+ ~ from the phase space of 
hidden states into the reals), and hence form a Boolean lattice. The result 
of Kochen and Specker suggests that it should be possible to provide a 
direct lattice theoretical proof  of the impossibility of embedding the lattice 
of quantum theoretical propositions into a Boolean lattice, i.e., of develop- 
ing a hidden variable extension of the quantum theory in such a way that 
all propositions become compatible. This should follow from the specific 
order structure of the lattice of quantum theoretical propositions (some 
non-Boolean lattices can be embedded into a Boolean lattice). 

In fact, Jauch and Piron do not attempt to prove the impossibility of this 
embedding. What they do prove is that there can be no dispersion-free 
states on a lattice in which some propositions are incompatible (Jauch & 
Piron, 1963). But this result is subject to the same objection as yon 
Neumann's result. There is still the possibility that a homomorphism 
exists from the lattice of quantum theoretical propositions into a Boolean 
lattice, which implies the existence of a function h': ~ ~ {0,1}, mapping 

t A different definition of compatibility is proposed in the paper by Jauch & Piron 
(1963). See Piron's thesis [Piton, C. (1964). Helveticaphysica acta, 37, 439] for the proof 
of the equivalence of various definitions of compatibility. 

:~ Such an example was first proposed by Birkhoff, G. & yon Neumann, J. (1936). 
Annals of Mathematics, 37, 823. 
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the lat t ice of  q u a n t u m  theoret ica l  p ropos i t ions  onto  {0,1}, under  the 
cond i t ions :  

h'(a ^ b) = h'(a) h'(b) 
(4.4) 

h'(a v b) = h'(a) + h'(b) - h'(a) h'(b) 

for  all  compatible a, b e ~Lf'. t 
Jauch  and P i t o n  define a state as an addi t ive  m a p p i n g  to f rom 5t ~ in to  

the  in terval  [0,1], such tha t  to(0) = 0 and co(l) = I. I t  is also required that ,  
for  any a, b E ~ ,  to(a ^ b) = 1 if  to(a) = co(b) = 1. Hence  a p r o o f  of  the 
non-exis tence of  dispers ion-free states on a cer ta in  lat t ice 5r amounts  to a 
p r o o f  of  the non-exis tence of  a funct ion to:c,q _+ {0,1}, satisfying the 
condi t ions :  

to(a v b) + co(a ^ b) = co(a) + co(b), for  all  compa t ib le  a, b ~ s (4.5) 

to(a ^ b) = 1, i f  to(a) = to(b) = 1, for  any  a, b E ~ (4.6) 

Cond i t i on  (4.5) fol lows f rom the assumpt ion  of  addi t iv i ty  for  compa t ib le  
p ropos i t ions  and  is numbered  (3) in the paper  by  Jauch and  Piron.  Con-  
d i t ion  (4.6) is n u m b e r e d  (4) ~ Together  these condi t ions  imply tha t  co 
satisfies condi t ions  (4.4) for  compat ib le  propositions.:~ The requi rement  
tha t  (4) ~ holds  for  incompat ib le  p ropos i t ions  as well a rb i t ra r i ly  restricts 
the  class o f  h idden  var iable  extensions o f  the q u a n t u m  theory.  

The  conclus ion  o f  Jauch and  P i ron  cannot ,  therefore,  be  regarded  as a 
significant improvemen t  on  yon  N e u m a n n ' s  result.w The  p r o o f  does no t  
rule out  a large class o f  h idden  var iable  extensions o f  the  qua n tum theory  
character ized by  a phase  space ~~ of  h idden  states, a p robab i l i ty  measure  
P0 on Y" for  each stat is t ical  state ~b, and  a real -valued funct ion fA on 
satisfying condi t ions  (2.2) associa ted with each physical  pa r ame te r  A, 
such tha t  all  the stat ist ical  theorems of  quan tum kinemat ics  are recovered.  
Cond i t i on  (2.2), i.e., f A ( h ) = ~  implies  fg(A)00=g(c~), requires  tha t  
f a+ , (h )  = o~ + /3  =fA(h)  +fB(h)  and  fAB(~) = o5]~ =fA0~) fB(A), i f  )cA(),) = o~, 
fB()') = /3  and  A, B are  coheren t  physical  parameters .  This means  tha t  each 

? The map h': 5r -§ {0,1} corresponds to the homomorphism h : ~  -~ {0, t)  from the 
partial Boolean algebra of idempotent physical parameters represented by projection 
operators in Hilbert space onto {0,1}. The homomorphism h satisfies the conditions: 

h(P..Pb) = h(Po)h(Pb) 
and 

h(P, + Pb) = h(P~) + h(P~), for eomrnuting P,, Pb 
The proposition a ^ b is associated with the projection operator P,. Pb. The proposition 
a v b is associated with the projection operator P,  + P~ -- P,-Pb. 

:~ It suffices to prove that (4.5) and (4.6) imply that oJ(a ̂  b )=  o~(a)w(b), for com- 
patible a, b. From the definition of compatibility it follows that a v b can be expressed in 
terms of disjoint elements: a v b = (a ^ b.L) v (a ^ b) v (b ̂  a• Hence (4.5) can be 
written as: 2oJ(a ̂  b) = w(a) + co(b) - to(a ̂  b i )  - a~(b ̂  a-L). From this expression it is 
easy to prove a contradiction if co(a ̂  b) # oJ(a) o~(b). 

w Bell (1966), first pointed out the inadequacy of condition (4) ~ He did not, however, 
distinguish between his objection to condition (4) ~ and his objection to the use of a 
corollary to Gleason's theorem in this context. (See footnote on p. 7.) 
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hidden state A E 3F defines a homomorphism ha: ~ -+ ~ of the partial 
algebra ~ of quantum theoretical physical parameters into ~ ,  defined by 
ha(A ) =fA(h). If A, B are coherent idempotent physical parameters, then 
the corresponding compatible propositions a, b satisfy conditions (4.4): 
ha'(a ^ b) = ha'(a)ha'(b), ha'(a v b) = ha'(a ) + ha'(b ) - ha'(a)ha'(b ). It is 
possible to develop a hidden variable extension of the quantum theory in 
which (4.4) is satisfied for compatible propositions, without necessarily 
satisfying condition (4.6) or (4) ~ for all propositions, as required by Jauch 
and Piron. 

It might be argued that the Jauch and Piron proof is successful as an 
attempt to provide a lattice theoretical analogue of von Neumann's proof, 
which utilized the properties of Hilbert space. However, yon Neumann's 
result is manifestly inadequate, since it does not exclude a large class of 
hidden variable extensions of the Hilbert space quantum theory. What is 
required is a lattice theoretical analogue of the Kochen and Specker proof 
(or Gleason's theorem)--since it is this result which is the 'strongest' hidden 
variable theorem for Hilbert space quantum theory. If condition (4.6) or 
(4) ~ is both necessary and sufficientt for the required conclusion with 
respect to the general orthomodular lattice considered by Jauch and 
Piron, this indicates only that the proposed lattice structure is much more 
general than the quantum theory. In order to provide a direct lattice 
theoretical proof of the impossibility of developing a hidden variable 
extension of the quantum theory, i.e., of embedding the lattice of quantum 
theoretical propositions into a Boolean algebra, an additional defining 
characteristic is probably required for the lattice of quantum theoretical 
propositions, which together with the other axioms of Jauch and Piron 
will entail the non-existence of a function h': ~L~ ~ {0,1} satisfying con- 
ditions (4.4). 

5. The Proof o f  Margenau and Cohen 

In 1949, Moyal published a classic paper (Moyal, 1949a) in which he 
investigated the possibility of reproducing the quantum statistics from 
joint probability distributions for position and momentum, i.e., of relating 
the statistical states of the quantum theory to probability distributions over 
a classical phase space W, where the points h E W are the values of the 
position and momentum variables. Moyal pointed out that if a rule is 
specified for associating functions of physical parameters A, B--represented 
by non-commuting operators A, B in the quantum theory--with corre- 
sponding functions of these operators, then the moments are determined 
by the rule, and hence the distribution function F(A,B)  is determined. 
Thus, there is a close relationship between a distribution function and a 
'correspondence rule'. Moyal developed his theory for a correspondence 

t This has been suggested by Jauch and Piron. [See Jauch, J. M. and Piron, C. (1968). 
Reviews of Modern Physics, 40, 228.] 
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rule which reduces to Weyl's rule1" for position and momentum variables 
and an associated distribution function first introduced by Wigner.$ 

This approach has recently been extended by Margenau & Cohen 
(1967a), who have proposed a general expression for normalized, real- 
valued distribution functions on the phase space of position and momentum 
variables satisfying the conditions that integration over the momentum 
yields the quantum theoretical probability distribution for position, and 
integration over the position yields the quantum theoretical probability 
distribution for momentum. This expression is then related to a general 
expression for a correspondence rule. It is claimed that these expressions 
generate the totality of suitable distribution functions on the phase space 
of position and momentum variables, and the totality of correspondence 
rules. Thus, each appropriate distribution function can be associated with 
a certain correspondence rule in an explicit way. The Wigner distribution 
and the Weyl rule are special cases of these general expressions. 

Margenau and Cohen are therefore in a position to answer the following 
question: Is it possible to find a normalized, real-valued distribution 
function, F, on the phase space of position and momentum variables, 
and an associated correspondence rule, such that for any real-valued 
function of position and momentum, fA, and its corresponding operator A: 

r = f fA(A) F~(A) dA (5.1) Av 
&r 

and also: 
f ,  

Av r = J g(fA()t)) Fr t) d)t (5.2) 
w 

for any function g. Margenau and Cohen refer to Cohen's thesis for the 
proof that the same distribution function F cannot be used to calculate the 
average values of both A and g(A). This is equivalent to the statement that 
the same correspondence rule cannot be used to derive both A from fa 
and g(A) from g(fA). 

Although Margenau and Cohen do not attempt to relate their conclusion 
to the proofs of yon Neumann, et al., what they have demonstrated amounts 

t Weyl's rule is: 
n 

q"P'--" 2. 7 

See Moyal, J. E. (1949). Proceedings of the Cambridge Philosophical Society. Mathematical 
ant Physieal Sciences, 45, 104. 

:~ The Wigner distribution function is: 

F(q, p) l f , 1 = ~b ( q - 2 ~ r ) e x p ( i r p )  l 

See Moyal, J. E. (1949). Proceedings of the Cambridge Philosophical Society. Mathematical 
and Physical Sciences, 45, 102. 
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to a similar result, restricted to the phase space of position and momentum 
variables. In the notation of Margenau and Cohen, the equations (5.1) 
and (5.2) are expressed as (Margenau & Cohen, 1967b) : 

(~bl G(q, p) I~b) = f f g(q,p) F(q,p) dq dp (5.3) 

= ff K(g(q,p))F(q,p)dqdp (5.4) 

where q, p are the operators corresponding to the position and momentum 
parameters q, p, which are also the variables of the phase space. The 
condition (2.2) of Kochen and Specker is expressed as (Margenau & Cohen, 
1967c): 

g(q,p) ~ G(q, p) (5.5) 
K(g(q,p)) -+ K(G(q, p)) 

The analysis of Margenau and Cohen is interesting, because it can be 
directly compared with Moyal's theory. Moyal realized the impossibility 
of embedding the partial algebra of physical parameters of the quantum 
theory into the commutative algebra of real-valued functions on the 
classical phase space of position and momentum variables in such a way 
that conditions (5.1) and (5.2) are satisfied. He cited the example of a 
harmonic oscillator, whose energy eigenvalues form a discrete set 
E, = (n + �89 The corresponding eigenfunctions are continuous functions 
of q, or continuous functions of p (Hermite functions). Hence a joint 
distribution forp and q must extend continuously over the whole p, q plane, 
while a joint distribution for the energy and phase angle (certain functions 
o fp  and q) will be concentrated on a set of ellipses defined by the discrete 
energy eigenvalues. Moyal (1949b) concluded: 

'We are thus forced to the conclusion that phase-space distributions are 
not unique for a given state, but depend on the variables one is going to 
measure .. . .  The statistical interpretation of quantum kinematics will thus 
have to give methods for setting up the appropriate phase-space distri- 
bution of each basic system of  dynamical variables in terms of the wave 
vectors, and for transforming such distributions into one another.' 

It follows immediately from the Kochen and Specker definition of 
coherence that a coherent set of physical parameters can be embedded into 
the commutative algebra of real-valued functions on a certain phase space. 
If  every member At of this coherent set is expressed as a function c~ of the 
physical parameter A, then the phase space WA can be defined as the set of 
possible values of A, and each At can be associated with the function 
~ :  WA ~ ~ .  It is easy to see that if a probability measure p~.4) is defined 
on WA, satisfying the condition: 

/ZOA(~/) = p~a)(f~l(jg)) (5.6) 
then, for any At = c~i(A) : 

tzSa,(d[) = p~a)(f a, (.///)) (5.7) 
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If  the physical parameters of a statistical theory are not all coherent, a 
phase space ~A, ~Lr~, ... can be defined for each coherent set d ,  ~ . . . .  , so 
that appropriate relative measures pC(a), p$(m,.., satisfy conditions (5.6) and 
(5.7). Moyal constructed his phase space, ~Rs, out of the possible values 
of appropriate non-coherent pairs of physicM parameters. He proved the 
theorem (Moyal, 1949c) that the Weyl correspondence rule can be applied 
in a consistent way to any function g(kl R + lc2 S) of a linear combination 
of the basic parameters R, S. Hence, if the physical parameter G represented 
by the operator G is relevant, the phase space is defined as 2YRs, for appro- 
priate physical parameters R, S such that G corresponds to the real-valued 
function g(k I R + k2S ) on ~Rs. Moyal's theory may therefore be regarded 
as an expression of the essential content of the proof of Kochen and 
Specker. 

6. The 'Hidden Variable' Theories o f  Bohm and his Collaborators 

In Section 2, a hidden variable extension of a statistical theory was 
characterized as an embedding of the partial algebra of physical parameters 
into the commutative algebra of real-valued functions on a suitable phase 
space of hidden states, so that the probability measures /Z~A (for a fixed 
r E 5 P, and all A ~ ~ )  are derived from a probability measure p~ defined 
on the phase space. Moyal's theory does not conform to this definition, 
because the phase space probability distribution associated with a certain 
statistical state r is not fixed but varies with the relevant physical para- 
meters, i.e., the probability distributions may be said to be 'relative to the 
measurement context'. 

Bohm also explicitly pointed out this aspect of his original 1951 'hidden 
variable' theory. In a section on von Neumann's proof, he wrote (Bohm, 
1952b): 

'His conclusions are subject, however, to the criticism that in his proof 
he has implicitly restricted himself to an excessively narrow class of 
hidden parameters and in this way has excluded from consideration 
precisely those types of hidden parameters which have been proposed 
in this paper . . . .  For example, if we consider two noncommuting 
observables, p and q, then von Neumann shows that it would be in- 
consistent with the usual rules of calculating quantum-mechanical 
probabilities to assume that there were in the observed system a set of 
hidden parameters which simultaneously determined the results of 
measurement of position and momentum "observables". With this 
conclusion we are in agreement. However, in our suggested new inter- 
pretation of the theory, the so-called "observables" are. . ,  not properties 
belonging to the observed system alone, but instead potentialities whose 
precise development depends just as much on the observing apparatus 
as on the observed system .... Thus, the statistical distribution of  "'hidden" 
parameters to be used in calculating averages in a momentum measurement 

8 
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& different from the distribution to be used in calculating averages in a 
position measurement, yon Neumann's proof.., that no single distribution 
of hidden parameters could be consistent with the results of the quantum 
theory is therefore irrelevant here, since in our interpretation of measure- 
ments of the type that can now be carried out, the distribution of hidden 
parameters varies in accordance with the different mutually exclusive 
experimental arrangements of matter that must be used in making different 
kinds of measurements. In this point, we are in agreement with Bohr, who 
repeatedly stresses the fundamental role of the measuring apparatus as 
an inseparable part of the observed system.' (Italics inserted.) 

Bohm's theory may be regarded as an attempt to articulate the funda- 
mental confusion in the approach of Kochen and Specker (or the von 
Neumann approach) to the hidden variable problem, i.e., the interpretation 
of the physical parameters represented in the theory by self-adjoint Hilbert 
space operators as attributes of 'quantum objects', and the consequent 
rejection of hidden variable theories. The Copenhagen interpretation of 
the quantum theory, as expressed by Bohr, is motivated by the same insight. 
Bohr repeatedly emphasized the 'impossibility of any sharp separation 
between the behaviour of atomic objects and the interaction with the 
measuring instruments which serve to define the conditions under which 
the phenomena appear' (Bohr, 1949a). Hence, he proposed that "evidence 
obtained under different experimental conditions cannot be comprehended 
within a single picture, but must be regarded as complementary in the sense 
that only the totality of the phenomena exhausts the possible information 
about the objects' (Bohr, 1949a). This is another way of expressing the 
fact that a conventional phase space or hidden variable interpretation of the 
quantum statistics, as discussed by von Neumann and Kochen and Specker 
will involve relative phase spaces and relative probability measures, i.e., 
different phase spaces and associated probability measures for each coherent 
set of physical parameters. The Kochen and Specker theorem that the 
different phase spaces and associated probability measures for non-coherent 
sets of physical parameters cannot be reduced to a single phase space and 
associated probability measure is the content of Bohr's principle of 
complementarity. 

In the theory of Bohm & Bub (1966), a Hilbert space, 24~ is introduced 
in addition to the Hilbert space ~t~ of 'statistical states' of the quantum 
theory. The equation of motion proposed for ~b involves ~ and describes 
a process in which ~b is projected onto a particular eigenvector of the 
representation in which the matrix of the operator representing a certain 
relevant physical parameter is diagonal. It follows from the form of this 
equation that the resulting eigenvector is determined by the greatest ratio 
I~b,12/l~ e,12, where ~b~ and ~:~ (i = 1,...,n) are the components of ~b and 
respectively in the relevant representation (say, the A-representation), 
assuming for simplicity that J4~ and J{~ are n-dimensional Hilbert spaces 
and A is non-degenerate. Hence, it might be supposed that the theory is 
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simply a straightforward counter-example to the Kochen and Specker 
proof, with a phase space f = 24% x ~4% real-valued functions fA on f 
defined by the algorithm: 

14,,I fa@,se)=Ak if ~72k12> ~ f o r a l l i C k  (6.1) 

and a probability measure pC on f defined as the product of an atomic 
probability measure on J ~  concentrated at the point ~b (where ~b is the 
relevant 'statistical state') and a normalized, uniform distribution on the 
surface of the unit hypersphere in J{~. 

In the n-dimensional case, it is not difficult to prove tha t /%a(~ ' )  = 
p ~ ( f s ~ ( ~ ) ) ,  if A is non-degenerate. Suppose, for simplicity, that the only 
eigenvalue of A in the set ~ '  is Ak, which can be re-labelled A1 without loss 
of generality. Then, according to the quantum theory, /%A(~' )= l~bll 2. 
The inequalities (6.1), defining the set f21 (jg,) in the space ~ ca nbe expressed 
a s  

1@112" 2 ( i = 2 ,  .,n) (6.2) 
/"i 2 > 14,,iz-1 . .  

o r :  
2 

Zi2((~l . . . .  , ( ~ n - l )  > ~7112~"1 k~l  . . . .  , ( ~ n - l )  (6 .3 )  

where ~ = r ~ e x p ( i O ~ ) ,  and the equations r~=r~,(~l . . . . .  ~n-1) define a 
transformation from the coordinates q , . . . ,  r, to spherical coordinates 
r, q~,..., q5,_1.'~ For a fixed ~b, (6.3) is a set of n - 1 inequalities defining 
limits on the n - 1 angle variables q51 . . . .  , ~b,_ 1 only. The measure of the 
set of points f 2 1 ( J / / )  is computed by integrating a constant distribution 
f u n c t i o n - - 1 / S = ( n - 1 ) ! / 2 7 r ' ,  where S is the surface area of the unit 
hypersphere in ~ defined by 

over the region on the surface of the unit hypersphere in 2/Cr defined by 
the inequalities (6.2) or (6.3) for a fixed ~b, and integrating the resulting 
function of ~b over the space J~O" The integration over J{'0 is trivial and 
yields the value of this function at the relevant point ~b; hence, the com- 
putation of p O ( f A l ( ~ ) )  simply involves an integral over the variables 
~1,..., ~,- l ,  01..- 0,, with the range of integration defined by (6.3) for a 
fixed ~b, specified by the relevant 'statistical state'. 

t Explici t ly:  r~ = r cos r  r~ - r s in r  . . . s inr162 r ,  = r s i n q ~ l . . . s i n r  The  
Jacobean of the transformation is: 

O(rl . . . . .  r,) = r "-1 sin "-2 qS, sin "-3 q52...sin q5,_2 J O(r, 4, ..... r 

= r"-' ~(4, ..... G-~) 
so that: 

d r , . . . d r ,  = r"-'  dry( 4, . . . . .  $,_~)d$, . . .d(o,_> 
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The element of volume in the space YC~ is: 

d V  = q . . . r ,  d q  . . . dr ,  dO1. . . dO,, 
(6.4) 

= r 2n-1 d r d ~  dO1. . ,  dO, 

where dq) involves only the n - 1 angles ~ , . . . ,  4,-i. The surface element 
on the unit hypersphere is: 

d S  = dq~ dO ~ . . . dO, (6.5) 
Let: 

oo cO 

I =  r 2 , _ l g ( r 2 ) d r  = (n - 1)! dt (6.6) 
0 0 

where g(r 2) is any hyperspherically symmetrical function which leads to a 
convergent integral/, and g is the Laplace transform of G, i.e., 

g(r 2) = f exp (-r  2 t )  G(t )  dt 
0 

Then: 

- I " d q )  r 2 n -  1 g ( r  2) dr 

0 

2"- l (n-  1 ) i (  
- I " r l . . .  r.  g(r  1" -~-'' ' + rn 2) d q . . .  dr.  

I i  

-(nTi1)! f d(rl2)...d(Fn 2) ;exp[-(rl2+...+r.2)t]G(t)dt 
r=O 

( n -  1)! 
2I 

f G ( t ) d t  f exp [--(rl  2 + "  "Jr r,2) t ] d ( r 1 2 ) . . ,  d ( r ,  2) 

t = 0  

0 

= I#,12 ( 6 . 7 )  

The apparent simplicity of this interpretation of the theory is, however, 
illusory. In the present form of the theory, the functions fa cannot be 
defined for degenerate operators A, such as the idempotent operators 
representing quantum theoretical propositions in a Hilbert space of more 
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than two dimensions. The theory can obviously be extended in various 
ways to include degenerate operators,y but any such generalization will 
violate condition (2.2), i.e., the relationship fg(A~ =g(fA) will not be 
satisfied. In other words, the theory of Bohm and Bub is not a hidden 
variable extension of the quantum theory in the sense of the phase space 
theories considered by yon Neumann, Jauch and Piron, and Kochen and 
Specker. In particular, the physical parameters of the quantum theory 
represented by self-adjoint Hilbert space operators are not interpreted as 
referring to physical attributes of 'quantum objects', and consequently the 
'hidden variables' are not introduced as specifying 'hidden states' of 
'quantum objects', probabilistically related to the 'statistical states' ~. 

Unfortunately, the emphasis on measurement, which has no place in a 
physical theory, has led to misunderstandings about the intention of the 
theories of Bohm and other workers in this field, and also of the Copen- 
hagen interpretation. It is generally supposed that the change from classical 
to quantum theories has something to do with the impossibility of simul- 
taneously measuring or observing certain physical attributes of micro- 
objects, since there is no similar measurability restriction for the 
corresponding physical attributes of macro-objects. On this view, classical 
mechanics is applicable to the macro-level, because physical attributes of 
macro-objects are represented in the theory by real-valued functions on the 
points (classical states) of a suitable vector space (phase space). Quantum 
mechanics is applicable to the micro-level, because physical attributes of 
micro-objects are represented in the theory by (the eigenvalues of self- 
adjoint) operators on a suitable vector space (Hilbert space). The non- 
commutativity of some operators then reflects the impossibility of simul- 
taneously observing the corresponding physical attributes. This is proposed 
as the meaning of the uncertainty principle, or the feature of comple- 
mentarity, and the reason for the essentially statistical character of the 
quantum theory. The hidden variable approach therefore seems to involve 
nothing more than the reactionary program to reinstate classical mechanics 
as the fundamental description of the micro-level, and the rejection of all 
that is novel in the quantum theory. It is claimed that hidden variables are 
introduced in order to characterize a phase space of micro-states on which 
real-valued functions can be defined to represent the physical attributes of 
micro-objects, in the manner of classical mechanics, so that the peculiar 
statistical relations of the quantum theory are simply explained by the 
incompleteness of the quantum theory. This concept of a hidden variable 
theory of quantum phenomena is indeed reactionary, and its consequences 
have been thoroughly explored by yon Neumann et al. It has been shown 
that the algebraic structure of self-adjoint Hilbert space operators cannot 

t For example, the Hilbert space ~ e  can be defined to have the same number of 
dimensions as the degeneracy of the relevant operator. This generalization is in fact 
required for the description of the Einstein-Podolski-Rosen paradox. Evidently, such 
a theory would be radically different from the hidden variable theories considered by 
yon Neumann et al. 



122 JEFFREY BUB 

be embedded into the algebraic structure of real-valued phase space 
functions, so that the statistical relations of the quantum theory cannot 
be recovered in a 'cheap' way simply by introducing additional hypothetical 
variables to 'complete' the quantum theory. However, it does not seem to 
have been noticed that even Bohm's original 1951 theory was not a 'hidden 
variable theory' of this kind! The theory does not simply provide a 'realistic' 
description of a new kind of physical system with peculiar properties--the 
'quantum object'. This interpretation of the theory is incompatible with 
the assignment of phase space probability distributions 'relative to the 
measurement context'. Part of the confusion is probably due to the term 
'measurement', which is misleading here. t 

Bohr often expressed dissatisfaction with his own writings on comple- 
mentarity. In his article 'Discussion with Einstein on Epistemological 
Problems in Atomic Physics' Bohr referred to a passage explicating the notion 
of complementarity in his well-known reply to the Einstein-Podolski-Rosen 
paradox, as follows (Bohr, 1949b): 

'Rereading these passages, I am deeply aware of the inefficiency of 
expression which must have made it very difficult to appreciate the trend 
of the argumentation aiming to bring out the essential ambiguity involved 
in a reference to physical attributes of objects when dealing with phenomena 
where no sharp distinction can be made between the behaviour of the objects 
themselves and their interaction with the measuring instruments. I hope, 
however, that the present account of the discussions with Einstein in the 
foregoing years, which contributed so greatly to make us familiar with 
the situation in quantum physics, may give a clearer impression of the 
necessity of a radical revision of basic principles.['or physical explanation 
in order to restore logical order in this field of experience.' (Italics inserted.) 

The principle of complementarity, or the theorem of Kochen and Specker, 
is only the statement of the problem which the 'hidden variable' theories 
propose to resolve by 'a radical revision of basic principles for physical 
explanation', i.e., by suitably interpreting the physical parameters and 
statistical states of the quantum theory from the point of view of a broader 
theoretical and philosophical framework. The further elaboration of this 
broader description will be the subject of later articles. 
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